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: Abstract

In general, a signal cannot be reconstructed from its sign, i.e., from its
" hardlimited versfon. However, by deliberately adding noise to samples of the signal
prior to hardlimiting, it is shown that the signal can be estimated consistently
from its hardlimited noisy samples as the sampling rate tends to infinity. In fact,
such estimates are shown to converge with probability one to the signal and also,

| to be asymptotically normal. The estimates, which are generally nonlinear, can be

’ ’ made linear by a proper choice of the noise distribution. These rather unexpected

results hold for all bounded and uniformly continuous signals. In addition to the

hardlimiter, such results are also established for certain monotonic and non-

monotonic nonlinearities.

The work of E. Masry was supported by the Office of Naval Research under
Contract NOOO14-75-C-0652. The work of S. Cambanis was supported by the Air Force
Office of Scientific Research under Grant AFOSR-75-2796.

E. Masry is with the Electrical Engineering & Computer Sciences Depart-
ment, University of California at San Diego, La Jolla, CA 92093.

Wf“\{mw# A s e SETAPISIEND L ¢ T

]
!° . S. Cambanis is with the Department of Statistics, University of North
‘ Carolina, Chapel Hill, NC 27514.

80 3 24 008

N, e e e -, )
o 1




Y-

o i Jactal "y
e e e e + . J - . -

I. INTRODUCTION

In this paper we study the problem of reconstructing a real signal s(t)
defined on an interval I, from certain nonlinear transformations of its samples
{s(k/H)}k that are deliberately corrupted by additive noise {Xy}y, i.e., from
{fls(k/W) + xk]}k where f(x) is a memoryless nonlinearity such as a hardlimiter.
Under appropriate conditions it is shown that a properly chosen, generally non-
linear, estimate §w(t) of s(t) converges in quadratic mean, as well as with proba-
bility one, to s(t) as the sampling rate W tends to infinity. It should be pointed
out that the memoryless nonlinearity f(x) need not be one-to-one so that the signal
s(t) cannot, in general, be recovered from {f[s(k/W)]}, as W tends to infinity, in
the absence of the additive noise {Xy}. It is the deliberate addition of the noise
that makes the reconstruction of the signal feasible.

This work is motivated by the observation that an arbitrary continuous func-
tion s(t), -=<t<e cannot, in general, be reconstructed from its sign, sgn{s(t)],
-o<t<o, This situation remains true even when the function s(t) is analytic, e.g.,
bandlimited. We recall that for a bandlimited function s(t) = J[w eitAS(x)dA.

S(x) € L{[-W,W], we have by Titchmarsh's theorem [1] the conditionally convergent
product s(t) = s(0) T _,(1 - t/z,) where s(0) # 0 and {z,} is the set of all (real
and complex) zeros of s(z), z = t+iu, in the complex plane. Thus s(t) cannot be
determined from its zero crossings since the complex zeros are not observable.
Duffin and Schaeffer [2] have shown that the function r(z) & C cosWz-s(z),

C > supy|s(t)|, has real simple zeros {t,} only and r(t) = r(0) n:=](1-t/tn) so
that

|

t) = C cosWt - [C-s(0 1 1 -
s(t) = € coskt - [-s(0)] 1 (1 - - )

Hence, s(t) can be determined by the zero crossings of C cosWt-s{t). This result

has found no practical use in communication systems since the identification of the




zero crossing points {tn} of C cosWt-s(t) as well as the formation of the infinite
product nn(l-t/tn) are not easily implemented. More significantly, no digital re-

construction scheme of s(t), based on samples of sgn[C cosWt-s(t)], is available.

It will be shown in Section II that for all bounded uniformly continuous
signals s(t) (not necessarily bandlimited) we have estimates §w(t) of s(t), based
on the binary data {sgn[s(k/w)+xk]} , which converge with probability one to s(t),

as the sampling rate W tends to infinity. It is the deliberate corruption of the

samples of the signal by the noise, before hardlimiting, that makes it possible to

- reconstruct s(t) from the output of the hardlimiter. Moreover, by properly choos- b
" ing the distribution of the noise, we can make the estimate to be linear. P
The general problem can be modelled as a transmitter/receiver (with no

channel noise) with a structure depicted in Figure 1. A continuous-time signal s(t)

on an interval I is sampled at equally-spaced points {k/N}k in I where W is the
sampling rate. The samples {s(k/N)}k are then deliberately corrupted by additive

! noise {Xg} which is a sequence of independent identically distributed random vari-
ables whose distribution is specified below. The noisy samples {Yw,k 8 s(k/N)+Xk}k
are passed through a given memoryless nonlinearity f(x) which need not be monotonic,
a typical example being a hardiimiter. Its output sequence {Zw,k 4 f(Y“’k)}k is

transmitted. The receiver structure is generally nonlinear and consists of a

linear system hy = {hw(t,k)}k cascaded with a memoryless nonlinearity g(x). The

output m (t) of the linear system hy is given by
My W
ﬁlu(t) = E Za k hy(t,k), tel . (M)

, The choice of the linear system does not depend on the signal s(t) nor on the dis-
i tribution of the noise nor on the nonlinearity f(x) in the transmitter; it only
; depends on the time interval I. On the other hand, the nonlinearity g(x) in the

receiver is determined by the distribution of the noise and the nonlinearity f(x)

D o hafE A A

in the transmitter. The estimate Qu(t) of s(t) is defined by

Sq(t) = gliy(t)] ., ter . (2)




The main results of the paper are the mean-square consistency of the esti-
mate (2) (Theorems 2.1 and 3.1), its strong consistency (Theorems 2.3 and 3.3),
and a central limit theorem for the error s,(t)-s(t) (Theorems 2.4 and 3.4). Of
possible independent interest are the convergence properties (Theorems 4.0-4.1) of
ﬁu(t) as an estimate of the mean function m(t) = E[f(s(t)+X)] of the output of the
nonlinearity f.

The feasibility of the reconstruction of the signal was suggested by the

results of a recent paper [3] by the authors; according to which s(t) can be
determined from the mean function m(t) = E[f(s(t)+X)]. This suggests that an esti-
mate of s(t) can be obtained from an estimate of m(t) via (2). The form of the
estimate (1) for m(t), i.e., the 1inear system in the receiver, was motivated by
the work of Dorogovcev [4] on the nonparametric estimation of regression functions.

Throughout the manuscript we shall assume that s(t) belongs to the follow-
ing class of signals.

Assumption A. Let b be a fixed known positive constant, and s(t) be any
uniformly continuous function on the interval I (finite or infinite) satisfying
[s(t)] = b for all t €1.

As a consequence, the receiver structure and the convergence results of

this paper are nonparametric in the signal. Incidentally, additional assumptions

on the signal, such as differentiability or bandlimitness, do not provide an
improvement in the rate of convergence.

The organization of the paper is as follows: Due to its apparent practical
significance, the case of a hardlimiter, f(x) = sgn x, is presented and discussed
separately in Section II. The general case is considered in Section [II. In
Section IV the convergence properties of the estimate ﬁu(t) are obtained. The

derivations of the theorems stated in Sections II and III are given in Section V.

Throughout this paper, the expressions o(-) and o) as W + = are uniform
in t over closed and bounded intervals in the interior of the interval I. This

property will not be repeated in the statements of the theorems.
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I1. THE HARDLIMITER CASE

In this section we consider tke hardlimiter case, f(x) = sgn x, for which
the transmitted data is binary. We make the following assumptions.

(i) The signal s(t) satisfies assumption A and the interval I is either
[0,1] or [0,=) (other choices are discussed in Section III).

(i1) The distribution of the noise X is either normal with mean zero,
known variance o and density ¢(x;0), or uniform over [-b,b]. (Other appropriate
distributions, such as Laplacian, could also be used.)

Define the function u(s) by

u(s) = E[sgn(s+X)], -w<s<=

When X is normal, u(s) is given by
s/lo _,2
un(s) = /2/1rf e Y /2 W, =@ <g<® | (3a)
0

and when X is uniform over [-b,b], we have
-1, s<=-b
uU(s) = s/lb , -bs=ssb (3b)
1 » b<s
Note that uy(s) and u(s) are strictly monotonic over (-w,=) and [-b,b], respectively.
We now specify the structure of the receiver. When X is normal, the non-
lineartiy g(x) is chosen as
i (00, Ixl = uyle)
QN(X) = s C=bte, >0 . (4a)
0 s |x|> uN(C)

When X is uniform over [-b,b], the nonlinearity g(x) is chosen as
bx , |x|=<1
QU(X) = (4b)
0 v | x]> 1

B e T Ty
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The choice of the linear system h = {hw(t,k)}k depends only on the interval I.
When 1 = [0,=), hw is defined by

k
W -
(t) eut,k=0,]’...,t20,u>o v (5)
k!

hy(t.k) =
and when I = [0,1], by

W ,
hw(t,k) = (K) tk('l—'c)w'k ,k=0,1,... W, 0=<t<1, (6)
W: positive integer.
A more general class of linear systems is considered in Section III. With

iy(t) = T son [s(&) + K my(tak), tel ' (7)

representing the output of either linear system (5) or (6), the estimate §w(t) of

s(t) is given by

sult) = gyl (t)], tel (8a)
when X is normal, and by
sy(t) =b m(t), t €I (8b)

when X is uniform over [-b,b]. (Since |ﬁw(t)|51, only the linear portion of gu(x)
is used.) Thus in the 1at£ér case, the estimate §"(t) is Tinear in the data
{sgn[s(k/H)+Xk]}k.

Our first result shows the mean-square consistency of the estimate §w(t)
and provides bounds on the rate of convergence; it is states in terms of the
mcdulus of continuity of s(t) defined by

w(s;8) = SUP{t, el [t-t”[< &} Is(t) - s(t*)], 6>0

Theorem 2.1. (a) If I = [0,1] and the linear system is determined by (6)
then for every 0 < t < 1, the estimates s,(t), given by (8a) and (8b), converge in

the mean-square sense to s(t), as W » =, and




‘e

~ 2 ] + O(]) 4
. 2. ———r
LS (0-s(0)] < Ky oF(ss ATT-EM) + K, - o (92)

(b) if I = [0,») and the linear system is determined by {5) then for
every t > 0, the estimates §w(t), given by (8a) and (8b), converge in the mean-
square sense to s(t), as W » », and

2

EL,(8)-s(8)2% < Ky W2(s3 JEH) + K, & 2F 1(2ie) (3b)

where Io(x) is the modified Bessel function of the 1st kind of order zero and

exp(-ZHt)IO(ZNt) = [1 + o(1)]//&WE .

The constants K,, K, are the same for both parts (a) and (b) and are given

as follows for the estimates (8a) and (8b).

2
For (8a): Ky = —§§ KZ , K = 1 ; (b/e)
o 2 4p2(b+e; o)
. - - n2
For (8b): K, =4, K2 = b

In the bounds (9) on the mean-square error, the first term is due to the
bias of the estimate whereas the second term is due to its variance; the bias
depends on the modulus of continuity of the signal whereas the variance is always
o(N']/z). For example, if s(t) is Lip y, 0 <y< 1, then the mean-square error is
o(H'mi"(Y’]/z)), and for y > 1/2, it is dominated by the variance and is o(w']/Z).
Additional smoothness conditions on the signal s(t), such as differentiability,
would provide faster convergence rate for the bias but would not improve the rate
of convergence of the mean-square error.

When X is normal, the constants K] and K2 depend on the variance 02 of X
and on ¢ (cf. (4a)). When the variance is asymptotically dominant, e.g. if the

signal is Lip y with 1/2 < y <1, asymptotically optimal choices for o and ¢ can be
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found by minimizing K2; we find o = 2b and € = b for which K, = 41reb2 and K] = 8e

2

(and these values are larger than those when X is uniform).
The next theorem shows that the estimates §w(t) converge to s(t) in the

Zzth mean for every integer 2 = 1 and that faster rates of convergence are avail-

able in this case.

Theorem 2.2. Llet s(t) be Lipy on I, 0 <y = 1. Then for all t in the

interior of I and for every integer 2 = 1 the estimates (8a) - (8b) satisfy

Es, (t)-s(1)1% = o(w*min(y,1/2)y

From the practical point of view, convergence of the estimate gw(t) to s(t)

with probability one (rather than in the mean) is preferable so that s(t) can be

reconstructed from almost every realization of the data {sgn[s(k/N)+Xk]}k , d.e.,
corresponding to almost every realization of the noise sequence {Xk}k. This strong
consistency of the estimate §w(t), along with its rate of convergence, is given in

the next theorem.

Theorem 2.3. Let s(t) be Lipyon I, 0 <y =<1, and let a be any constant
satisfying 0 < a < (1/2)min(y,1/2).

(a) If the linear system is determined by (5) then for each fixed t € (0,=)
and each fixed sequence W + = as n 4=, we have with probability one

(Nn)“|§wn(t) -s(t))>» 0 as n+=

(b) If the linear system is determined by (6), then for each fixed t € (0,1)
and with W=n, a positive integer, we have with probability one

n*|s,(t)-s(t))> 0 as no+=

Our final result in this section provides a central limit theorem for the

error gu(t)-s(t). When the noise X is uniform, we shall assume that it is uniform

-—d



over [-c,c] with ¢ > b, in which case the estimate (81 is replaced by

§,(t) = c i (t).

Theorem 2.4. Let s(t) be Lipy on I, 1/2 < y<1. Define
sy(t) = gy (t)s,(t)-s(t)], tel,

where the normalizing factor ew(t) is specified below.

(a) If I = [0,=) and the linear system is determined by (5) then the values
of the process {Ew(t), 0 <t <=} at distinct instants {ti} are asymptoticaily inde-
pendent standard normal variables as W + «.

(b) If I = [0,1] and the Tinear system is determined by (6) then for each
fixed t € (0,1), §w(t) is asymptotically standard normal variable as W » =.

When X is uniform over [-c,c], By(t) is given by

By(t) = (c varlm(t)371/2
and when X is normal, by

Ba(t) = 2 ols(t), o] War[R(t)13/?

Upper and lower bounds on ew(t) can be obtained from the bounds (35) on Var[ﬁw(t)].

The asymptotic normality of Ew(t) can be used to obtain confidence intervals
for the error §w(t)-s(t) by using the bounds on sw(t).

We conclude this section with some practical comments on the various trans-
mitter/receiver combinations. Clearly, the simplest transmitter uses uniformly
distributed noise and the corresponding receiver is then linear. The "Bernstein"
lTinear receiver would be the simplest to use since it employs a finite number
(W+1) of samples to reconstruct the signal over the interval [0,1]. The actual
sampling rate W to be used can be determined from Theorem 2.1 to correspond to an
acceptable mean-square error. For signals defined over [0,~), aside from using the
"Szasz" linear receiver, one could also use the "Bernstein" linear receiver

sequentially over consecutive intervals of unit length.

8
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II11. THE GENERAL CASE

In this section we consider general (nonconstant) nonlinearities f(x) in
the transmitter and, under appropriate conditions on f(x), we specify noise dis-
tributions, linear systems hy > and memoryless nonlinearities g(x) such that §w(t),
defined by (2) and (1), is a consistent estimate of the signal s(t) as W » =,
Theorems 3.1-3.4 contain Theorems 2.1-2.4 as special cases.

We first specify the distribution of the noise X, introduce appropriate
assumptions on f(x), and specify the memoryless nonlinearity g(x) in the receiver.
There are two types of symmetric distributions appropriate here, those supported
by the entire real line (- », ), and those supported by the finite interval [-b,b].
For the sake of concreteness we will concentrate on two such typical distributions,
the normal N(O,oz) with density ¢(x;0) and the uniform over [-b,b]. We shall use
the function u{s) defined by

u(s) = E[f(s+X)], -= < s <o . (10)
Clearly, u(s) depends on f and on the distribution of X. When X is N(O,oz), we

have

up(s) =‘/w f(s+x) ¢(xs0)dx ,

-0

and when X is uniform over [-b,b] we have
b
1
unls) = 5= fs+x)dx
U 2bf_b

In the particular case when f(x) = sgn x, “U(s) and uN(S) are given by (3). For
monotonic nonlinearities f(x) (which need not be strictly monotonic, e.g., the
hardlimiter), and for the case of nonlinearities f(x) described in (B2) below
(which need not be monotonic, e.g. f(x) = x3 - czx), it has been shown in [3]
that uN(s) is strictly monotonic, and thus its inverse ui](x) exists. We now
specify the memoryless nonlinearity g(x) in the receiver, for various classes of

transmitter-nonlinearities f(x) and noise distributions.




or (B3) is
(B1):

(B2):

(B3):

Assumption B. We say that (B) is satisfied if any one of (B1), (B2),
satisfied. '
i. X is N(0,0%).

ii. f(x) € L4[¢(x;o)dx) and is monotonic (not necessarily strictly).

1 (x)s wl=e) = x = ylc)
iii. g{x) - s,C=b+e,e>0 .
0 ,» Otherwise
i. X is N(0,5%).
ji. f(x) € L4[¢(x;o)dx] is an odd function and has nonnegative Hermite
coefficients {ek}k with e > 0. (See [3].)
iii. g(x) = u&](x) for - < x < o,
i. X is uniform over [-b,b].

ii. f(x)

sgn x.

bx, |x| <1

iii. g(x)
0, Ix|>1.

Qur first result shows the mean-square consistency of the estimate

;w(t) under general conditions on the Tinear system h, = {hw(t,k)}k .

14

Theorem 3.0. Let Assumptions (A) and (B) be satisfied. For every

t € 1 for which

i. hw(t,k) > 0, for all k,

ii. § hy(t,k) =1,
kw
5 (e - &) mgen W
iii, t - —) h,(t,k)> 0 as + s
K W W
iv. } hﬁ(t,k) +0 as W+
k

the estimate (2) converges in quadratic mean to s(t) as W+ »

The first condition on hw makes the linear system a positive linear

operator, the second is a summability/normalization condition, the third guarantees

1)
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that the bias of the estimate tends to zero, and the fourth condition guarantees y
that the variance of the estimate goes to zero. A large class of linear systems

hw satisfying the conditions of Theorem 3.0 can be obtained as follows.

Proposition 3.0. Let {5i};;] be a sequence of independent identically

distributed random variables with integer values, mean t € I, and finite second

moments. Then {hn(t,k)}k defined

ho(t.k) = Prig, + --e+ ¢ =k}, n= 1,2,...,k=0,%1,... (11)

satisfies assumptions (i)-(iv) of Theorem 3.0 (with W taking positive integer values)

LZ—

for every t € I for which the random variable & is not degenerate.

Positive linear operators of the type described in Proposition 3.0 have

been considered in the approximation theory literature [5], where conditions (i)-(iii)

[ et m———— e

of Theorem 3.0 are established and used for the interpolation of continuous functions
m(t) on I by Zk m(k/n)hn(t,k). We mention two examples: When each £ takes on the

values 0 and 1 with Prig; = 1} = t, then h, is given by (6) and represents the

R I T P —

Bernstein operator. When each Ei is Poisson with parameter t, then hn is given by
(5) (with W = n) and represents the Szasz operator.

Theorem 3.0, while guaranteeing mean-square consistency of the estimate
§w(t), provides no bounds on the rate of convergence. We shall derive such bounds
for linear systems h, corresponding to the class of generalized Szasz operators [6]
(see below) and to the Bernstein operator. While the Szasz operator (5) can be
generated as in Proposition 3.0, the class of generalized Szasz operators carnot.
We consider the entire class of generalized Szasz operators, rather than the single
Szasz operator, because with no additional work we obtain the same rates of con-
vergence for this entire class of linear systems.

n

We now introduce the generalized Szasz operators. Let A(z) = Z:=0 a,2

be an analytic function in |z] < R, for some R > 1, and suppose that for all n

1




} Ya

a >0 and A(1) =] a >0
n neg M

The Appel polynomials [7] pk(u), u = 0, are defined by their generating function

A(z) e = ¥ pk(u)zk . (12)
k=0
ji.e.,
()-‘k u
Pl = 1 s 3T

The generalized Szasz operator is represented by hy = {hw(t.k)}k with

-Wt
= & = >
hw(t,k) = pk(Nt) A k=0,1,...,t 20, W>0 . (13)

The Szasz operator corresponds to A(z) = 1 for which pk(u) = uk/k!

The following assumption specifies the interval I and the linear system

hN .

Assumption C. We say that (C) is satisfied if either (C1) or (C2) is
satisfied.
(C1): I = [0,») and hy is a generalized Szasz operator defined by (13) and (12).
(€C2): I =[0,1] and hy is the Bernstein operator defined by (6).

We shall therefore concentrate on signals s(t) defined on the positive
real line [0,=) or the unit interval [0,1]. By appropriate scaling one can simi-
larly consider signals defined on any half 1ine or any finite interval. The case
of signals defined on the entire real line can be reduced to the positive real line
by separately considering the parts of the signal on [0,«) and (= ,0].

A1l the following results hold under Assumptions (A), (B) and (C).
Assumption (A) states the conditions on the signal s(t), Assumption (B) determines
the nonlinearity g(x) in the receiver, and Assumption (C) determines the linear
system hw in the receiver.

Our next result proyides upper bounds on the mean-square estimation error.
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Theorem 3.1. Under Assumptions (A), (B) and (C) we have for each t € I,

that the estimate (2) satisfies

ELS,(t)-s()1% = K; wi(sia (t)) + Ky va(t)

where aﬁ(t) and vﬁ(t) are determined by (C),

for (C1): “5(t) =.%-+ AZ(1) + A7 (1 , vﬁ(t) . 1+0o(1)

A(1 W2 Y

and the constants K] and K2 are determined by (B),

for (81): K, = 4Q%(q7% + (b/)D), K, = Uylad + (b/2)%)

2
for (BZ): K-l = 4Q2/q2 s K2 = UZ/QZ ’
for (B3): K, = ab2q? . Kyt b2U2 ,

and the constants q, Q, U, and p are defined in (17).

It follows that §w(t) converges to s(t) in quadratic mean for every t
in the interior of the interval I, i.e., for t > 0 under (C1) and 0 < t < 1 under
(C2). Also, for the entire class of generalized Szasz operators, the rate of
decay of aﬁ(t) and vﬁ(t) as W+ = is the same, o(1/W) and o(1/VW), respectively,
and thus the rate of convergence of the bound on the mean-square error is also the
same. This rate is also identical to that of the Bernstein operator. For example,
when s(t) € Lip vy, 0 < y < 1, the mean-square error is o(w'mi"(7‘1lzb for all
choices of linear and nonlinear systems hw and g(x), covered by Theorem 3.1.

Bounds on the higher order moments of the estimation error can be ob-

tained in a similar manner and they provide faster rates of convergence.

13




Theorem 3.2. Assume that s(t) is Lipy on I, 0 <y <1, and that

Assumptions (A), (B) and (C) are satisfied. Let? be a positive integer and under

(B1) or (B2) assume, in addition, that f(x) € Lzz[o(x;a)dx]. Then for every t in

h

the interior of I, the estimate (2) converges in the 20t mean to s(t) as W+ =

and for some continuous function Kz Y(t),
]

Ke
in

. t)
E[Sw(t)-s(t)]n < m (1 +0(1)] .

The exact expression for Kz Y(t) is quite involved but easily expressed

in terms of F2 Y(t). introduced in the proof of Theorem 4.2, and the constants in
9

Proposition 5.1. The bound of Theorem 3.2 can be used to obtain the strong con-

- sistency of the estimate §w(t) and the rate of almost sure convergence.

Theorem 3.3. Assume that s{t) is Lipyryon I, 0 < vy <1, that Assump-

tions (A), (B) and (C) are satisfied, and in the case of (B1) or (B2) that

‘ f(x) € L22[¢(x;o)dx] for some positive integer g satisfying 2> 1 + Y-] for

0 <Y <1/2, and 2 23 for 1/2 = v < 1. Then with o any constant satisfying

0 <a <(1/2)(min(y,1/2) - 1/2), we have

(a) under (C1): For each fixed t > 0 and each fixed sequence of sampling

rates wn+w as n* » , we have with probability one

(NN)a sup |§w (t)-s(t)] -0 as N+
nz N n

(b) under (C2): For each fixed 0 < t < 1 and with W = n, a positive integer,

we have with probability one

N sup l§n(t)-s(t)l +0 as N-+o
nz N

’ As an example, when f(x) is bounded and monotonic (e.g. hardlimiter,

. . quantizer) we have @ < (1/2)min(y,1/2)(as ¢ may be taken arbitrarily large); and

' thus for Lip 1 signals we have, in particular,




(Wn)a |§H“(t)-s(t)| +0 as N+ w

with probability one for all a < 1/4. E

We finally show that, under certain conditions, the estimate §u(t) is
asymptotically normal and asymptotically independent at distinct times.

Theorem 3.4. Assume that s(t) is Lip v, 1/2 < y < 1, and that Assump-

tions (A), (B) and (C) are satisfied. In addition, assume that under (81) or (B2)
we have f{x) € Lp[ﬁ(x;o)dx] for all p > 1, and under (B3) that the noise X §s
uniform over [-c,c] with ¢ > b. For t € I define

§4(t) = sw(t)[éu(t) - s(t)] ,

‘o

where 12,2
By(t) = uls(t)] var (m,(t)]

(a) For each fixed t in the interior of I, §N(t) is asymptotically standard
normal as W > =, Bounds on the normalization factor au(t) can be obtained from (35).

(b) For the Szasz operator in (C1) (A{z) = 1) we have, in addition, that the

values of the process {§u(t), t >0} at distinct t's are asymptotically independent
as W+ e,

Some comments on Theorem 3.4. First, the theorem remains true if the
statement "s(t) is Lip v, 1/2 < y < 1" is replaced by "w(s;s) = 0(6]/2) as §+0"
(cf. the proof of Theorem 4.4). Second, part (b) of Theorem 3.4 remains true if
the Szasz operator is replaced by a generalized Szasz operator for which A(z) is a

polynomial (cf. the proof of Proposition 4.1(b)). The question of asymptotic inde-

pendence in the Bernstein case (C2) is open at present. Finally, the normalizing
E i factor su(t) will take a simple form if the exact rate of convergence of Var[ﬁu(t)]
can be established. Specifically, we have obtained in Theorem 4.4 upper and lower

bounds on Var[ﬁw(t)] of the form

0 < A(t)//W = Var[ﬁw(t)] = A(t) /W

15
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for some specified functions Ai(t), i =1,2. When s(t) is a constant, we find
A](t) = Az(t) in which case the rate of convergence of Var[ﬁu(t)] is exactly 1//W.
If it can be established that this rate is valid for all signals s(t) satisfying

Assumption (A), we would then obtain

A(t) = lim wi/2 Var[ﬁw(t)l

W+ o
and the central limit theorem for §u(t) could be stated in the more standard form:

H1/4[§u(t)-s(t)] is asymptotically normal with mean zero and variance

A(t)/{u’[s(t)1}2 :

A final comment in this section. For signals s(t) defined on [0,») we
always assumed uniform continuity of s(t) over {0,») and obtained results valid
on (0,=) (uniformly on finite subintervals). For signals defined on [0,=») that
are continuous but not uniformly continuous, using the results of [8], we obtain

results similar to those of Sections II and III valid over finite subintervals of

(0,=) (and expressed in terms of the modulus of continuity of s(t) over each such
subinterval). These results are of obvious interest but are not stated here

explicitly to avoid overburdening the text.

IV. CONVERGENCE PROPERTIES OF THE ESTIMATE ﬁw(t)

Let

m(t) = E[f(s(t) + X)] = n(s(t)), tel
be the mean function of the output of the nonlinearity f(x), where u(s) is defined
in (10). We establish the mean-square consistency, strong consistency, and a
central 1imit theorem for ﬁw(t), given in (1), as an estimate of m(t). These
results, which are of independent value, are given in Part (b). In Part (a) we

collect certain properties of the function u(s). In order not to overburden the

16
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text, the proofs of all the propositions are delegated to an Appendix.

(a) Properties of the Moment Function u(s)

For each k = 1,2,... define uk(s) by
ue(s) = ELFK(s4)], ww <5 <o, (14)

When X is N(O,cz), uk(s), denoted by Uy k(s), is well defined whenever
f(x) € LZk[o(x;o)dx] as follows by the inequality

2,,2
()1 = &8 72 e /2 (15)

shown in [3]. The following properties of uy ](s), denoted simply by uN(s), were
shown in [3]. uN(s) is infinitely differentiable. If f(x) < L2[¢(x;c)dx] is

monotonic (not necessarily strictly monotonic) then uN(s) is strictly monotonic and
uﬁ(s) >0 for all s

If f(x) € L2{¢(x;°)dx] is odd and has nonnegative Hermite coefficients {ek}:=0 .
then uN(s) is strictly monotonic with uﬁ(s) z e for all s and if, moreover,
e > 0 then

uﬁ(s) e >0 forall s

We shall need (and use) strictly positive lower bounds on luﬁ(s)l. Note that it
is possible to have uﬁ(s) +0as |s| > = (e.q., if |f(x)| <M and
limx_,tmf(x) = #M) and in such cases s would have to be limited to a bounded set
of values.

When X is uniform over [-b,b] and f(x) = sgn x, then ”U,k(s) is clearly
well defined for all s and all k and uu’](s), which is denoted by uu(s), is given

by (3b). Also
uyls) =-% >0 for |s|=b.

In proving a central limit theorem for ﬁu(t) and §w(t) we shall need the

following property:

17
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min  Var[f(s+X)] >0 . (16)
s| sb

When X is N(O.cz). Var{f(s+X)] = "N,Z(s) - uﬁ'](s) which is a continuous function
of s. Thus, to show (16), it suffices to show that Var[f(s+X)] # 0 for all

- < s <o . Indeed, if for some s, Var[f(s+X)] = O, then f(s+x) = Const for almost
all x with respect to the normal density ¢(x;o) and thus f(y) = Const for almost all
y, which contradicts our hypothesis that f(x) is not a constant function. When X

is uniform over [-c,c] with ¢ > b, and f(x) = sgn x, then (16) follows from

(o

Finally we shall use the following finite and nonzero constants whose

in  Vvar[sgn(s+X)] =1 - max (5)2 = 1
lsT <b [s| < b\

existence under Assumption (B1) or (B2) follows from the above discussion and

under (B3) is evident.

i - ( , under (B1)
LA "
q= lsnl\i<n°° ﬁﬁ(s) = e , under (B2) (17a)
IsTig b uﬁ(s) ., under (B3)
Q= max 1 (s) , under (B) (17b)
Is| =b
U, = max Vvar[f(s+X)] , under (B) (17¢)
Is| <b
v, = min  Var[f(s+X)) . under (B) (17d)
Isl =b
A= min{u(c) - u(b), u{-b) - u{-c)} , under (B1) (17e)
2 q(c-b).

Note that V, = 0 under (B3) but v, > 0 under the modified (B3) where X is uniform
over [-c,c] with ¢ > b. V, is used only under modified (B3) when needed.

13
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(b) Convergence Properties of ﬁw(t)
We begin by considering the mean-square error for a fixed t €1,

Elmy(t)-m(t)]% = Bias’[R,(t)] + Var[m(t)]
We have ‘ '

my(t) = E Zy altak) (18)

with Z,, | = f(s(k/W) + Xk). Since the Z's are independent we have for all k,
2 2
E[ZN k] < sup E[f(s+X)]" < =
» Is] < b
by Assumptions (A) and (B) (cf. (15)). Thus the series (18) converges in quad-
ratic mean, as well as with probability one, provided Zkhﬁ(t,k) < =, Then, since

E[Z, 1 = u(s(k/W)) = m(k/W), we have
- A
If hu(t,k) = 0 for all k, then Pw js a positive linear operator and by a well-

known result in approximation theory (see, for instance, Devore [9, pp. 28-29]),

if Zk hy(t,k) = 1 and m(t) is uniformly continuous on I, then

|Bias[m,(t)1] = [P (m,t)-m(t)| = 2u(may(t)) , (19)
where w(m;8) is the modulus of continuity of m(t) over I and

ad(t) 2 ((-1)%t) = E(;‘;— - t)2 htk) (20)
Also, using (17¢c), we have

Varly(6)) = | var(z, |1 hi(t.K) = U, va(t) (21)
where

OEIPEL RN (22)

Hence for each t € I for which hw(t,k) z 0 for all k, Zkhw(t,k) =1, and

thS(t,k) < ®, we have
19
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ELR, (£)-m(t)12 = 8% (msoy(£)) + U, vi(t) . . (23)

Thus if aﬁ(t) + 0 and vﬁ(t) +0as W+« it follows that ﬁw(t) converges in quad-

ratic mean to m(t) as W »~ =, This simple result is stated below.

Theorem 4.0. Under Assumptions (A) and (B), and for every t € I for
which hN satisfies conditions (i)-(iv) of Theorem 3.0, we have that ﬁw(t) converges

in quadratic mean to m(t) as W -+ =,

The following proposition, whose proof is given in the Appendix, is used

in determining bounds on the rate of convergence of ﬁw(t).

Proposition 4.1. (a) Let ¥(1A) be a 2m-periodic function continuously

differentiable on [-7,n] with Fourier series ¥(1) = Le=_o¥) exp(ikA). Then for

L=2,3,...,

b L 1 Ut L 2-1 2-1
k=§“ ()" = 2 ®] _["..._[w ¥ (}Z] xi) jg1 [+(2))dr,]

(b) For the generalized Szasz operator (13) we have for t, tys t, > 0,

- exp(-H(t, +t,)) = ty\K/2 (ty\k/2
() Ly hulty iyl - 20%(1) o 5 [(_";) +(T1-) (2 A T)

where e) = 1, ¢ =2 for k=1, b = zj=0 344250 k = 0 and I (x) is the modified

Bessel function of the first kind of order k.

. 2,0\ A © .2 . 1+ 0(1)
(i1) vglt) = T hy(t,k) = —== ,
W ksg W 2 /7ht
re- Wt Ij(2Ht) = vf,(t) < "Wt Ij(2t)
where T = A'z(l)Z:=0 ai . |

A

o ) } (2-1)/2 >
(1 T ngeior = ¥ et - (el e

20
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(c) For the Bernstein operator (6) we have for 0 <t <1 ,

1+ 0o(1)
2 /rWt(1-t)

W (2-1)/2
;s L (1 + o(1) S
(11) kZO [hu(tak)] = (ZHWt 1-t ) s vl >3

Theorem 4.1. Under Assumptions (A), (B) and (C) we have for each t € I,

W
. 2 A 2
t) = h t,k =
(1) w(e) & 1tk

Elm,(t)-m(t)1% < dol(msa (t)) + U, VE(t)

where the constant U, is given by (17¢) and uw(t) and vw(t) are as in Theorem 3.1.

Proof. The general bound on the mean-square error is given by (23). We
only need to show that m(t) is uniformly continuous on I and to compute aS(t) and
vﬁ(t) under (C1) and (C2). Since m(t) = u(s(t)) and u(s) is continuously differ-
entiable with bounded derivative over the range of s(t) (cf. 17(b)), the uniform
continuity of m(t) follows from that of s(t). In fact it is easily seen that

w(m;s) = Qufs;s) (25)
where the constant Q is finite by (17b). Next we compute aﬁ(t) and VS(t) under
(C1) and (C2). For the generalized Szasz operators, (C1), we have by (20) and (13)

=Wt

2,,\ _e v 2 _t A1) + A Q1)
aglt) = k-Wt Wt) = =
utt) A1 )W kz=0 (kWe)™ p (W) = g + WeA(1)

where the last step follows by the expression for the series given in [6]. The
expression for vﬁ(t) under (CT) follows by Proposition 4.1(b.ii). For the Bernstein
operator, (C2), aS(t) is equal to the variance t{1-t)/W of the binomial distribution
(W,t) and vs(t) is given by Proposition 4.1(c). O

Next we consider the convergence of ﬁw(t) in the Zzth mean. The follow-
ing proposition on the cumulants of hw(t) is needed and its proof is given in the

Appendix.

21
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Proposition 4.2. Let Assumptions (A), (B), and (C) be satisfied. Let

r be a positive integer and under (B1) or (B2) assume, in addition, that
f(x) € er[¢(x;o)dx]. Then for every choice of points {ts..nt,d in I, the joint

cumulant of ﬁw(t) of order r satisfies

L= T ]

(a) Jcum M (t,),....m(t )} =M, E ‘ by (t55K)

.i
for some finite positive constant Mr .

M L1+ o1))

(b)  feummy(t)),. .. m(t )} =

-1)/2
i=]
where
:t , under (C1)
D(t) = (26)
t{(1-t) , under (C2)

Theorem 4.2. Under the Assumptions of Theorem 3.2 we have
Fy o (t)

~ 21 "
E{m, (t)-m(t)] 5';;ﬁ;ﬁ%;j77§7 (1 +0o(1))

for some continuous function F, Y(t) specified in the proof.

Proof. For notational convenience we write m, m for ﬁw(t), m(t),

respectively. Since m-m = Bias[m] + (ﬁ-E[&]), we have
) .29 2k o a1 20-F cra crA1ad
Efm-m}?* = (Bias[)Z* + ) (J.)(Bias[m]) ELR-ELA]DY . (27)
j=2

Since an estimate for Bias[m] has already been obtained in (19), we seek an esti-

mate for E[m-E[M]]’. We recall that with n & m-E[m]

r P
E[nr] =) I n cum {n,....,n}, r=2 |, (28)
p=1 i=1 Vi

where the inner sum extends over all partitions (v}""’“p) of the set {1,...,r}
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satisfying v + .-+ + O (10]. Now any partition (v],...,vp) with p > [r/2]
(the integer part of r/2), will necessarily have a factor Cum1{n} = E[n] =0 in

the product of cumulants in (28). Thus the range of p in (28) is reduced to

p=1,...,[r/2]. Next we note that Cum, {n,...,n} Cumv{ﬁ,...,ﬁ} for v =2 and by
Proposition 4.2(b) we have

M1+ o(1)]

[Cum {n,...,n}= - , V=2
v 2w p(t)y&-1)/2
Thus for each p=1,...,[r/2] we have
p
I Mum (n,...n}sn —L1 2 o(l)] , (29)

i=1 P (2nup(t) 1 "-P)/2

with Hp : Zn?_] M, (29) implies that the dominant term in (28) as W-« corre-
- !
sponds to p = [r/2] so that for r =2 ,

[1 + o{1)] r=2 . (30)

PTSR
[E(m-E[m])"| = H (/o9 t2run(t) yr-tr/2072:

Since s(t) is Lipy, 0 <y <1, i.e., w(s;8) < LSGY, then by (25) m(t) is also
Lip ¥ with

.8) < Y, =
o(m;é) =L 6% L = LQ

Thus from (19) and aﬁ(t) = (D(t)/W)[1 + o(1)](cf. expressions in Theorem 3.1) we
have

Biasm| = 2L_(D(t)/M)7/4[1 + o(1)] . (31)
It then follows by (30) and (31) that (27) can be bounded by

elm-m) * = (20)% ()M [1 + o(1)]

2 (p(eyyrA-viay
*Dre] L (%) (2L ? 2l 1 (32

J

j tanp(e)yI-li/2llse

where

- i ] 2 i =
Gj = QY ~‘% (Y-]) - L‘lé—l » J = 233’~"!22
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We now seek the dominant term in the above bound as W + =. This depends on the
value of v.

(a) For 1/2 < y =1, the dominant term in (32) corresponds to j = 2 for
which 321 = 2/2 and thus
25 _ Hz[] + o(1)]

" {2m(t) Y WM

E[m-m]

(b) For 0 < y < 1/2, the sum 552 is o(N'Yz) so that

(sz)22 () 1"*
WY

Efm-m]?* = [1+ o(1)]

(c) For vy = 1/2, the terms in (32) corresponding to j odd are o(N'z/z) and

are negligible relative to the remaining terms. Thus

elioal? < L) (u)————fm’")m: Hijgg IV + o(1)]
Tt jso V3 (amp(t) /2 312
Jj even

These results can be combined for all 0 < vy =1 in the form given in the theorem
where F, Y(t) can easily be identified from the above analysis. O
We next obtain the strong consistency o# ﬁwtt). The result is identical

to Theorem 3.3 but with ﬁw(t)-m(t) replacing Ew(t)-s(t).

Theorem 4.3. Under the Assumptions of Theorem 3.3, ﬁw(t)-m(t) satisfies

its conclusion.

Proof. Fix t in the interior of I and consider the estimate ﬁw(t) as a

function of W: Define a process {nu, uz0} by

‘ m{t) , u=20
n, = ~
u l m1/u(t) , u >0
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(a) Under (C1), {n,, u2 0} is not necessarily separable. Fix a sequence
{"n}:=1 with W 4= and let {ﬁu,u > 0} be a separable version of {n, u = 0} with
a separating set which includes the points ug = 0 and u, = 1/Hn, n=1. Then for
any & >0 we have

sup |n. -ny| = sup |n, - nal . (34)
u =6 Up 0' T s U0

Now, since the two processes {"u’ u >0} and {ﬁu, u = 0} have the same finite

dimensional distributions, it follows by Theorem 4.2 that

Elfy - Apl? = K, (001 + o] u¥

where g=¢ min(y,1/2)-1. It then follows by Kolmogorov's theorem (see Neveu [11,

p. 97]) that with probability one

1 . -
—sup |n - ny| >0 as 6§40
Fuss U0

for any 0 < a < B/22. Hence by (33) and (34) we have, with probability one,

3 sup lﬁw (t)-m(t)] -0 as §+0 ,
e 1/wn56 n
and the result follows by choosing 6 = 1/NN.
(b) Under (C2), W = n (an integer) so that {“u’ u > 0} is separable.
Theorem 4.2 and Kolmogorov's theorem imply that, with probability one,

L sup ln1/n

& 1/n=s
and the result follows by choosing 6§ = 1/N. O

- "OI +0 as 6+0 ,

We finally derive a central 1imit theorem for the estimate m(t).
Define the normalized error process
iy (t)-n(t)
var' iy (0]

iy t)
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Theorem 4.4. Under the assumptions of Theorem 3.4 we have
(a) For each fixed t in the interior of I, ﬁw(t) is asymptotically standard

normal variable as W - » . The normalizing factor Var'1/2[ﬁw(t)] satisfy

@/ /0,3 2w+ o(1)] = var 2[R ()]

< AENE W+ o(1)] (35)

where the constants U, and V, are given in (17) and D(t) is given by (26).
(b) For the Szasz operator in (C1) (A(z) = 1), we have in addition, that the
values of the process {ﬁw(t). t > 0} at distinct t's are asymptotically independent

Yo

as W=, P

Proof. Putting
m,(t) - E[m{t)]
Ew(t) = Varllz[h
m(t)]

we have that

(1) = gy (0) ¢S]
W Var]/z[ﬁw(t)]

The proof is accomplished by showing that as W + = the second term goes to zero
and gw(t) has the asymptotic properties stated in the theorem.

Under (B1), (B2) and the modified (B3), we have by (17¢c) - (17d)

0 < V, = Var[Zw,k] < U2 <o (36)

and thus by (21),

2 - 2
’ V, viglt) = Var[m ()] < U, vy(t) (37)
r i. ] (with equality when s(t) is constant). Using the asymptotic expression for vﬁ(t)

given in Proposition 4.1(b)(c) we have




. Ve,

V(1 + o(1)] Var{iu(t)] U, L1 + of1)]
—_—— = Var S —_—
2/0(t)W " 2/x0(t)W

Hence by (31) and (38), since y > 1/2 ,

'Bi?;gw“ =‘3(“.1/2(y-1/2)) + 0
var " “[m (t)]

(38)

We now establish the desired asymptotic results for ;w(t) for t in the
interior of 1. It is clear that

Elg,(t)] = 0, Var[g, (t)] =1

For Part (a) we show that for each fixed t, all cumulants of gw(t) of order r 2 3
tend to zero as W-+«; the asymptotic normality of gw(t) follows then from
Lemma P4.5 of [12]). For Part (b) we show that for all r = 3 and all instants

t ,tr > 0, not necessarily distinct, the joint cumulant

10
Cumr{gw(t]),...,gw(tr)} +0 as Wawo , (39)

and in addition

E[gw(t])gw(tz)] +0 as Ws+we for t, # t, . (40)

It will then follow by the same Lemma of [12] that all finite dimensional distribu-
tions of the process {gw(t), t > 0} converge to the finite dimensional distributions
of a Gaussian process with mean zero and covariance R(t].tz) =1 for t, = t2’ and
R(t1,t2) = 0 for t] # tz, i.e., with independent values at distinct points. Both
goals will be achieved if we show (39) in general, and (40) in the Szasz case,

which we now proceed to do. For r = 3 and {ti} in the interior of I, we have

Cum (my(t.), .0 (¢ )3
r

Cum {Ew(t Yooeosby(t )y =
r 1 W''r
)f \Iar”2

5 [m,(t;)]

and using the upper bound in Proposition 4.2(b) for the numerator and the lower

bound in (38) for each factor in the denominator, we obtain
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Cum (g, (t,),....5 (L)} = ou-(r-2)4y L ¢

since r = 3. Next we prove (40) for the special case of the Szdsz operator in (C1).
Note that by Proposition 4.1(b), specialized for the Szasz case, we have

-W(t,+t,)
e (4 Io(2AE,) (81)

kzo hw(t] ,k)hw(tz,k)
Now

Covim(t,) M (t,)} = k;fo Var(Z, \ Ih(t k)b (ty.K)

and by (36) and (41)
-W(t]+t )

|Covim(t,) m(t,)}] < U, e 2 120 )

By (37) and (41) we have Var[f(t)] = v, o 2Wt Io(24t), so that
U, I, (2WAT;)

|EL, (t)5,(t,)]] =75 VT
2 (15(2Ht)) T (2Ht,))

Using the asymptotic expansion [13, p. 86] for large x, Io(x) = (Zux)°]/2ex(l+o(1/x)).
we obtain for t] # t2 as W+o,
Y

‘Etgw(t] )Ew(tz):” = ‘V;

M
e [MT+o(1)] 0

Finally, the bounds on Var']/2

[ﬁw(t)] follow from (37) and Proposition 4.1. D
V. PROOFS OF THEOREMS OF SECTIONS I1 AND III
Using the convergence results for ﬁw(t), proven in Section IV(b), and the
relationships Qu(t) = g[ﬁw(t)]. m(t) = u[s(t)], we now establish the convergence
results for §w(t) stated in Sections II and III. The basic link between the prop-

erties of §w(t) and ﬁw(t) is provided by the following proposition whose proof is
given in the Appendix.

28




ta

o
o p

Proposition 5.1. Let Assumptions (A) and (C) be satisfied. Then

(a) under (B1), with p = 1, we have
E15,(t)-s(t) [P = [(1/a)P + (b/a)P] Elmy(t)-m(t) [P ,

(b) under (B2) we have

(t)-s(0)] = (g) my(e)-me)]
(c) under (B3) we have

sy(t)-s(t) = blm,(t)-m(t)] ,

where the constants q and A are defined in (17) and b is the upper bound for s(t).
Theorems 3.0-3.2 follow immediately from Theorems 4.0-4.2, respectively,
and Proposition 5.1. Theorem 3.3 follows from Theorem 3.2 and Kolmogorov's
theorem [11, p. 97] in the manner of the proof of Theorem 4.3. The deduction of
Theorem 3.4 from Theorem 4.4 is given below. Finally, Theorems 2.1-2.4 follow
immediately from Theorems 3.1-3.4, respectively. (In Theorem 2.1, for the esti-
mate (8a) under (B1), the values of the constants K1. K2 are obtained from those
of Theorem 3.1 by using the computed values q = 2¢{b+c,a), Q = /2/x/s, Uz =1, and
the inequality 4 > g{(c-b); the use of this inequality results in a simple expres-

sion for K] and KZ')

Proof of Theorem 3.4. (a) Fix t in the interior of the interval I. By
1/2

Theorem 4.4(a), the distribution of [ﬁu(t)-m(t)]/Var [ﬁw(t)] converges to the
distribution of a standard normal variable, say T A result of Mann and Wald

(14, p. 226] shows that if g(x) has a continuous first derivative in the neighbor-

hood of m(t), and g“(m(t)) # 0, then the distribution of {g[ﬁ(t)] - g[m(t)]}y/
Var]/Z[ﬁH(t)] converges to the distribution of the normal variable

g (m(t))ct. Since |s(t)| < b, m(t) = u(s(t)) takes values in the interval

[u(-b),u(b)] for al1 t € I. Thus under (B1), (B2) or the modified (B3) stated in !
the theorem, g(x) is continuously differentiable over an interval containing
[u(-b),u(b)] and g“(x) > O for u(-b) < x < u(b). It follows that the distribution of
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A “w(t) -s(t) gl (t)] - glm(t)]

S(t) = 172 172

m(t)]  var'/“[m (¢)]

converges to the distribution of the normal variable g‘(m(t))ct and the result
follows from g-(m(t)) = 1/u’[s(t)] .

(b) Let {t, }1 = be distinct points in (0,~). By Theorem 4.4(b), the dis-
tribution of {mM(ti)}‘.=1 converges to the distribution of independent standard
normal variables, say {ci}§=], as W » ». Again by the result of Mann and Wald [14,
p. 226], the distribution of {:=] eigw(ti) converges to the distribution of
the normal variable Z§=1 eig‘[m(ti)]ci whose mean is zero and variance is
Z$=] ef{g’[m(ti)]}z. Since the ei's are arbitrary, it follows that the variables

{§w(ti)}§=] are asymptotically independent normal. O

APPENDIX
A. Proof of Proposition 3.0. It is clear by (11) that hn(t,k) > 0 for all k and

Zkh (t,k) = 1. Also, that L, = & * --- *+ & has mean nt and variance n Var[ei].

Hence

To(k- ) -1 -1 -
I (& - t) mpttak) = b varl,] - fvarle ] -0 as nee

Thus conditions (i)-(iii) of Theorem 3.0 are satisfied for all t € I. For (iv)

we have ]

.
2 1 2
kz_m fp(tak) = i o j_T I8, )1 &

T/n
= 1 N 2n
= lim % [_T/n 6 (1)1 o

where ¢, (), ¢£(A) is the characteristic function of ¢ , &., respectively. Since
n

Ei is integer valued, ¢§(A) is periodic with period 2n. Consider all t € I for

which Ei is a nondegenerate random variable. Then ¢E(x) has a positive funda-

mental period which, without loss of generality, can be taken as 2n. Then




©

I K =5 e )P @

k=~ -7

and (iv) follows by dominated convergence since I¢E(A)| <1 for0 <[] <v.O

"
B. Proof of Proposition 4.1. (a) We have Yy * (I/Zw{[ ¥(A)exp(-ika)dr and thus

" 2] -3k
lklzfﬂ k !k|§Nw (2“)"'1 .[ f“ j=1 I:"(A )e J d)«i]

ﬂyN ( { xi) jn] [w(xj)dx -]

ik
where WN(A) = 2|k|'<N wke’ - Since ¥()) is continuously differentiable,
wN(A) = ¥(1) uniformly on [-v,r] and, in fact, max|A|< "[w(x) - WN(A)Is Const N'V2
(see [15, p. 31]). The result follows by applying the dominated convergence

theorem.

(b) By choosing ¥ (A) = exp[Nt(eiA-l)] A(eiA)A'1(1), we obtain from the gen-
erating function A(z) of the Appel polynomials (12) that wk(t) = h (t k). Hence
by Parseval's relationship

n

Pt . 1 *
PRGN CYORS | Ty, () ¥ (e

-1
-W(t,+t,)
e 172

=—-A—2(—];——— %2“ fexp[w(t e +t

e ™3lae’| aA:

But the Fourier series A(eix) = {:=0 ake1kx converges boundedly and uniformly on
[-7,7], since A(z) is analytic in |z] <R for some R > 1, so that by interchanging
summation and integration (as in Part (a)) the expression in braces becomes

.[w W(t]+t2)cosk ei[(j 2)A+H(t] t2)51nx] o
leJz 21r

" L a8, (ty/t) 2 1 (anRE)

3N

- . - T LI - o s -



by [16, p.488]. I_n(x), and considering the sum for j > ¢

and j < £, we obtain Part (b.i). For (b.ii) we have from (b.i) with t =t =t that

Noting that In(x) =

ZNt o

k=0 h“(t k) = Az(l) kZo Py () (A1)

-2Wt
N o oo 2Nt .
-L_Az(l) eobolo(zm) Te Io(ewt)

On the other hand, since |¥,(2)| = exp(-Wt)exp(Wt cosr) we have

AL

v .2 1T 2 - 20t
kzo hy(t k) = i?',[" v, (A)" dr = e (W)

which completes the proof for the upper and lower bounds in (b.ii). In order to

obtain the asymptotic result in (b.ii) we note that [13, p. 86] as x + =

X
2 1
I (x) = < [1 + (4n"-1) o -—] (A2)
n ¥2nx (x)
’ where the term o(1/x) is uniform in n. Hence as W + = we have by (Al)

o NI S 1 e [ (0 ol

-2 2
Jﬁ:i_ zl +A5(1) O(ZWt) 20 (4k°-1) ekbk% .

since Z:=0 by = [Z;-O aj 2 = Az(l). The asymptotic result will follow by showing

k=0(4k2-1)ekbk < . Since A(z) = ano nZ " is analytic in |z| < R for some R > 1,

there exists a constant 0 < r < 1 such that a = Const r". This implies that

b, = {:30 a4 3k < Const r". Thus {:_0 kzbk < » and the result follows. For Part

: (b.ii1) we have by Part (a) with ¢ > 3

|

‘0 © % ' 1 U , 2-1
, PRCYOR RN S I NEXCIEY

and the result follows by using the bound IYt(x)I < exp(-Wt)exp(Wt cosr) and (A2):




‘e

r""'.‘"‘v

v ) Wt -1 _ 1+ o)\
k) = 1.(Wt)] (-_______)
kEO Chy(t.k) 1" < [e 0 —

(¢) By choosing Wt(k) = (t PLE 1-t)w. which is the characteristic function
of the binomial distribution, we have wk(t) = hw(t,k) where hw(t,k) is given in (6).
Part (c.i), (c.ii) follow in the manner of (b.ii), (b.iii), respectively, using the
property
(" 2. W 1 +o{1)
5— | [1-a sin")/2)dx = —-~
2n [ﬂ ¥ naW

for 0 <a <1, shown in [4]. O

C. Proof of Proposition 4.2. (a) From (18) we have

Cum{ﬁw(t1),...,ﬁw(tr)} = g - Cum_ {Zw,k]’ Ty K } n hw(t k)

r

= Z Cum, (2,
where the first equality is justified below and the second equality follows from
the independence of {Zw k}k and the fact that the joint cumulant of independent
sets of random variables is zero [12, p. 19]. Part (a) will follow from (A3) pro-
vided Cum (Z, ... ,Zw’k}lffﬂr for some finite positive constant M_ - which is
seen as follows:

p p
where the inner sum extends over all partitions (v],....vp) of the set {1,...,r}

satisfying v, + ... + Vo = T {12, p. 19]. By Assumption (A), for all k

E|2 2. k' < sup E|f(s+x)|" = Const, < = , v

Teouu,r (AS)
sl <b

where the last step follows from (15) and f(x) € LZr[¢(x;o)dx] under (B1) and (B2)
(under (B3) this is obvious). Putting (A5) in (A4) gives the required bound M.




‘e

-
®

The first equality in (A3) is justified as follows. Since cumulants and moments
can be expressed in terms of each other (cf. (A4) and (28)), it suffices to justify
the exchange of expectation and summation for moments. This will follow by Fubini's
theorem provided
r
Z e X E il
K z

k i

Ty k, hw(ti,ki)’ (A6)
1 r

1
is finite. But by the multi-dimensional version of Hdlder's inequality, (A6) is
bounded by

r r wr
ror T nr
E ) n {EIZw’kihw(t’-.ki)l P - n [E Elzw,kil hw(t,--k,-)]

1 kr i= i i

The latter is finite since EIZN k|r < » by (A5) and Zk[hu(t,k)]r < = by
Proposition 4.1(b)(c).

(b) By the rth dimensional version of Holder's inequality for sums we have

) }I/r

k i

" =

r
hy(tysk) < 1 {

Il [hy(t; k)1

1 k

and the result folliows by Proposition 4.1(b)(c). O

D. Proof of Proposition 5.1

We provide the proofs in reverse order.

(¢) Under (B3) we have m(t) = (1/b)s(t) since [s(t)| < b. Also
m,(t) = L sanls(k/M) + X Jhy(t.k)
satisfies lﬁ“(t)l < Zkh“(t,k) = 1, Hence g(x), given under (B3), is used only for
Ix| =1 and thus s (t) = b ﬁu(t).

(b) Under (B2), u'](x) exists for all x, s(t) = u'][m(t)] and gu(t) = u'][ﬁu(t)].

The result follows from the inequality

PO O —M;L;—'f-l-(-s-r qlx-y|

SI(D

which is valid for all ~=» < x,y < = .,
34
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(a) Under (B1) u'](x) exists for all x and s(t) = u'][m(t)]. For simplicity

we omit W and t in the following. We have by (B1)

) { bty - w i m], if u(-c) = m = u(e)
|s-s| =

[s| » otherwise.

Also for u(-c) =< x,y = u(c),

-1 -1 < X- - _
™ () - w T = ety T elxyl

Is] = ¢
and thus
E[s-s|® = (1/q)P E[m-m(P + |s|° Prim @ [u(-c),u(c)]}
Now
Prim ¢ [u(-c),u(c)I} =1 - Priu(-c) =m = u(c)}

1-Pr{u(-c)-m < m-m <= u(c)-m}

A

1-Pr{|m-m| = A} = Pr{|m-m| > A}

(1/8)P€ {-m|P

iA

where the first inequality above follows from (17e) since m(t) = u[s(t)] =

u(-b) =m =< u(b) = n(c)-m = u(c)-u(b) = 0 and u(-c)-m < u(-¢)-u(-b) = 0. The

result follows. O
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Figure 1. The structure of the transmitter/receiver model.




